
Monetize Telegram Mini App with Telega.io
Connect your app, set CPM, and watch your revenue grow!
Start monetizing
21.7

Advertising on the Telegram channel «Learning Mantras»
5.0
4
Education
Language:
English
295
1
Best Quality Global active audience in this channel.
Get Recognition of your Brand in the Global Market.
You can advertise here with us !!!
Share
Add to favorite
Channel temporarily not accepting requests
Choose another channel from recommendations or get a tailored list within your budget using AI
AI Channel Picker
Recent Channel Posts
Simple Harmonic Motion : Summary Lecture Notes | Yakeen NEET 2.0 2025 (Legend).pdf
121
16:10
14.11.2024
Waves 06 : Class Notes | Yakeen NEET 2.0 2025(Legend).pdf
118
16:10
14.11.2024
Waves : DPP 03 (of Lec-06) | Yakeen NEET 2.0 2025 (Legend).pdf
131
16:10
14.11.2024
📚Notes on Trigonometric Equations and Identities📚
A function f(x) is said to be periodic if there exists some T > 0 such that f(x+T) = f(x) for all x in the domain of f(x).
In case, the T in the definition of period of f(x) is the smallest positive real number then this ‘T’ is called the period of f(x).
Periods of various trigonometric functions are listed below:
1) sin x has period 2π
2) cos x has period 2π
3) tan x has period π
4) sin(ax+b), cos (ax+b), sec(ax+b), cosec (ax+b) all are of period 2π/a
5) tan (ax+b) and cot (ax+b) have π/a as their period
6) |sin (ax+b)|, |cos (ax+b)|, |sec(ax+b)|, |cosec (ax+b)| all are of period π/a
7) |tan (ax+b)| and |cot (ax+b)| have π/2a as their period
➖Sum and Difference Formulae of Trigonometric Ratios
1) sin(a + ß) = sin(a)cos(ß) + cos(a)sin(ß)
2) sin(a – ß) = sin(a)cos(ß) – cos(a)sin(ß)
3) cos(a + ß) = cos(a)cos(ß) – sin(a)sin(ß)
4) cos(a – ß) = cos(a)cos(ß) + sin(a)sin(ß)
5) tan(a + ß) = [tan(a) + tan (ß)]/ [1 - tan(a)tan (ß)]
6)tan(a - ß) = [tan(a) - tan (ß)]/ [1 + tan (a) tan (ß)]
7) tan (π/4 + θ) = (1 + tan θ)/(1 - tan θ)
8) tan (π/4 - θ) = (1 - tan θ)/(1 + tan θ)
9) cot (a + ß) = [cot(a) . cot (ß) - 1]/ [cot (a) +cot (ß)]
10) cot (a - ß) = [cot(a) . cot (ß) + 1]/ [cot (ß) - cot (a)]
➖Double or Triple -Angle Identities
1) sin 2x = 2sin x cos x
2) cos2x = cos2x – sin2x = 1 – 2sin2x = 2cos2x – 1
3) tan 2x = 2 tan x / (1-tan 2x)
4) sin 3x = 3 sin x – 4 sin3x
5) cos3x = 4 cos3x – 3 cosx
6) tan 3x = (3 tan x - tan3x) / (1- 3tan 2x)
➖For angles A, B and C, we have
1) sin (A + B +C) = sinAcosBcosC + cosAsinBcosC + cosAcosBsinC - sinAsinBsinC
2) cos (A + B +C) = cosAcosBcosC- cosAsinBsinC - sinAcosBsinC - sinAsinBcosC
3) tan (A + B +C) = [tan A + tan B + tan C –tan A tan B tan C]/ [1- tan Atan B - tan B tan C –tan A tan C
4) cot (A + B +C) = [cot A cot B cot C – cotA - cot B - cot C]/ [cot A cot B + cot Bcot C + cot A cotC–1]
➖List of some other trigonometric formulas:
1) 2sinAcosB = sin(A + B) + sin (A - B)
2) 2cosAsinB = sin(A + B) - sin (A - B)
3) 2cosAcosB = cos(A + B) + cos(A - B)
4) 2sinAsinB = cos(A - B) - cos (A + B)
5) sin A + sin B = 2 sin [(A+B)/2] cos [(A-B)/2]
6) sin A - sin B = 2 sin [(A-B)/2] cos [(A+B)/2]
7) cosA + cos B = 2 cos [(A+B)/2] cos [(A-B)/2]
8) cosA - cos B = 2 sin [(A+B)/2] sin [(B-A)/2]
9) tanA ± tanB = sin (A ± B)/ cos A cos B
10)cot A ± cot B = sin (B ± A)/ sin A sin B
➖Method of solving a trigonometric equation:
1) If possible, reduce the equation in terms of any one variable, preferably x. Then solve the equation as you used to in case of a single variable.
2) Try to derive the linear/algebraic simultaneous equations from the given trigonometric equations and solve them as algebraic simultaneous equations.
3) At times, you might be required to make certain substitutions. It would be beneficial when the system has only two trigonometric functions.
➖Some results which are useful for solving trigonometric equations:
1) sin θ = sina and cosθ = cosa ⇒ θ = 2nπ + a
2) sin θ = 0 ⇒ θ = nπ
3) cosθ = 0 ⇒ θ = (2n + 1)π/2
4) tan θ = 0 ⇒ θ = nπ
5) sinθ = sina⇒ θ = nπ + (-1)na where a ∈ [–π/2, π/2]
6) cosθ= cos a ⇒ θ = 2nπ ± a, where a ∈[0,π]
7) tanθ = tana⇒ θ = nπ+ a, where a ∈[–π/2, π/2]
8) sinθ = 1 ⇒ θ= (4n + 1)π/2
9) sin θ = -1 ⇒ θ = (4n - 1) π /2
10) sin θ = -1 ⇒ θ = (2n +1) π /2
11) |sinθ| = 1⇒ θ =2nπ
12) cosθ = 1 ⇒ θ =(2n + 1)
13) |cosθ| = 1⇒ θ =nπ
105
10:15
29.11.2024
close
New items
Selected
0
channels for:$0.00
Subscribers:
0
Views:
lock_outline
Add to CartBuy for:$0.00
Комментарий