
Monetize Telegram Mini App with Telega.io
Connect your app, set CPM, and watch your revenue grow!
Start monetizing
22.9

Advertising on the Telegram channel «Python Projects & Job Interviews»
5.0
5
Computer science
Language:
English
743
0
Share
Add to favorite
Buy advertising in this channel
Placement Format:
keyboard_arrow_down
- 1/24
- 2/48
- 3/72
- Native
- 7 days
- Forwards
1 hour in the top / 24 hours in the feed
Quantity
%keyboard_arrow_down
- 1
- 2
- 3
- 4
- 5
- 8
- 10
- 15
Advertising publication cost
local_activity
$19.20$19.20local_mall
0.0%
Remaining at this price:0
Recent Channel Posts
imageImage preview is unavailable
List Slicing in Python 👆
139
16:25
31.05.2025
imageImage preview is unavailable
𝟴 𝗕𝗲𝘀𝘁 𝗙𝗿𝗲𝗲 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗳𝗿𝗼𝗺 𝗛𝗮𝗿𝘃𝗮𝗿𝗱, 𝗠𝗜𝗧 & 𝗦𝘁𝗮𝗻𝗳𝗼𝗿𝗱😍
🎓 Learn Data Science for Free from the World’s Best Universities🚀
Top institutions like Harvard, MIT, and Stanford are offering world-class data science courses online — and they’re 100% free. 🎯📍
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3Hfpwjc
All The Best 👍
145
13:37
31.05.2025
Data Science Interview Questions
1. What are the different subsets of SQL?
Data Definition Language (DDL) – It allows you to perform various operations on the database such as CREATE, ALTER, and DELETE objects.
Data Manipulation Language(DML) – It allows you to access and manipulate data. It helps you to insert, update, delete and retrieve data from the database.
Data Control Language(DCL) – It allows you to control access to the database. Example – Grant, Revoke access permissions.
2. List the different types of relationships in SQL.
There are different types of relations in the database:
One-to-One – This is a connection between two tables in which each record in one table corresponds to the maximum of one record in the other.
One-to-Many and Many-to-One – This is the most frequent connection, in which a record in one table is linked to several records in another.
Many-to-Many – This is used when defining a relationship that requires several instances on each sides.
Self-Referencing Relationships – When a table has to declare a connection with itself, this is the method to employ.
3. How to create empty tables with the same structure as another table?
To create empty tables:
Using the INTO operator to fetch the records of one table into a new table while setting a WHERE clause to false for all entries, it is possible to create empty tables with the same structure. As a result, SQL creates a new table with a duplicate structure to accept the fetched entries, but nothing is stored into the new table since the WHERE clause is active.
4. What is Normalization and what are the advantages of it?
Normalization in SQL is the process of organizing data to avoid duplication and redundancy. Some of the advantages are:
Better Database organization
More Tables with smaller rows
Efficient data access
Greater Flexibility for Queries
Quickly find the information
Easier to implement Security
270
06:48
31.05.2025
imageImage preview is unavailable
𝟰 𝗣𝗼𝘄𝗲𝗿𝗳𝘂𝗹 𝗙𝗿𝗲𝗲 𝗥𝗼𝗮𝗱𝗺𝗮𝗽𝘀 𝘁𝗼 𝗠𝗮𝘀𝘁𝗲𝗿 𝗝𝗮𝘃𝗮𝗦𝗰𝗿𝗶𝗽𝘁, 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲, 𝗔𝗜/𝗠𝗟 & 𝗙𝗿𝗼𝗻𝘁𝗲𝗻𝗱 𝗗𝗲𝘃𝗲𝗹𝗼𝗽𝗺𝗲𝗻𝘁 😍
Learn Tech the Smart Way: Step-by-Step Roadmaps for Beginners🚀
Learning tech doesn’t have to be overwhelming—especially when you have a roadmap to guide you!📊📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/45wfx2V
Enjoy Learning ✅️
185
05:13
31.05.2025
imageImage preview is unavailable
Python Important Star Patterns.
301
19:01
30.05.2025
imageImage preview is unavailable
𝗙𝗥𝗘𝗘 𝗧𝗔𝗧𝗔 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗩𝗶𝗿𝘁𝘂𝗮𝗹 𝗜𝗻𝘁𝗲𝗿𝗻𝘀𝗵𝗶𝗽😍
Gain Real-World Data Analytics Experience with TATA – 100% Free!
This free TATA Data Analytics Virtual Internship on Forage lets you step into the shoes of a data analyst — no experience required!
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3FyjDgp
Enroll For FREE & Get Certified🎓️
275
12:41
30.05.2025
imageImage preview is unavailable
Web Development Beginner to Expert Level Project Ideas
383
10:12
30.05.2025
imageImage preview is unavailable
𝗙𝗥𝗘𝗘 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 𝗧𝗲𝗰𝗵 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍
🚀 Learn In-Demand Tech Skills for Free — Certified by Microsoft!
These free Microsoft-certified online courses are perfect for beginners, students, and professionals looking to upskill
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3Hio2Vg
Enroll For FREE & Get Certified🎓️
306
05:10
30.05.2025
If you're serious about getting into Data Science with Python, follow this 5-step roadmap.
Each phase builds on the previous one, so don’t rush.
Take your time, build projects, and keep moving forward.
Step 1: Python Fundamentals
Before anything else, get your hands dirty with core Python.
This is the language that powers everything else.
✅ What to learn:
type(), int(), float(), str(), list(), dict()
if, elif, else, for, while, range()
def, return, function arguments
List comprehensions: [x for x in list if condition]
– Mini Checkpoint:
Build a mini console-based data calculator (inputs, basic operations, conditionals, loops).
Step 2: Data Cleaning with Pandas
Pandas is the tool you'll use to clean, reshape, and explore data in real-world scenarios.
✅ What to learn:
Cleaning: df.dropna(), df.fillna(), df.replace(), df.drop_duplicates()
Merging & reshaping: pd.merge(), df.pivot(), df.melt()
Grouping & aggregation: df.groupby(), df.agg()
– Mini Checkpoint:
Build a data cleaning script for a messy CSV file. Add comments to explain every step.
Step 3: Data Visualization with Matplotlib
Nobody wants raw tables.
Learn to tell stories through charts.
✅ What to learn:
Basic charts: plt.plot(), plt.scatter()
Advanced plots: plt.hist(), plt.kde(), plt.boxplot()
Subplots & customizations: plt.subplots(), fig.add_subplot(), plt.title(), plt.legend(), plt.xlabel()
– Mini Checkpoint:
Create a dashboard-style notebook visualizing a dataset, include at least 4 types of plots.
Step 4: Exploratory Data Analysis (EDA)
This is where your analytical skills kick in.
You’ll draw insights, detect trends, and prepare for modeling.
✅ What to learn:
Descriptive stats: df.mean(), df.median(), df.mode(), df.std(), df.var(), df.min(), df.max(), df.quantile()
Correlation analysis: df.corr(), plt.imshow(), scipy.stats.pearsonr()
— Mini Checkpoint:
Write an EDA report (Markdown or PDF) based on your findings from a public dataset.
Step 5: Intro to Machine Learning with Scikit-Learn
Now that your data skills are sharp, it's time to model and predict.
✅ What to learn:
Training & evaluation: train_test_split(), .fit(), .predict(), cross_val_score()
Regression: LinearRegression(), mean_squared_error(), r2_score()
Classification: LogisticRegression(), accuracy_score(), confusion_matrix()
Clustering: KMeans(), silhouette_score()
– Final Checkpoint:
Build your first ML project end-to-end
✅ Load data
✅ Clean it
✅ Visualize it
✅ Run EDA
✅ Train & test a model
✅ Share the project with visuals and explanations on GitHub
Don’t just complete tutorialsm create things.
Explain your work.
Build your GitHub.
Write a blog.
That’s how you go from “learning” to “landing a job
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
All the best 👍👍
397
18:03
29.05.2025
imageImage preview is unavailable
𝗧𝗼𝗽 𝗠𝗡𝗖𝘀 𝗢𝗳𝗳𝗲𝗿𝗶𝗻𝗴 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 😍
Google :- https://pdlink.in/3H2YJX7
Microsoft :- https://pdlink.in/4iq8QlM
Infosys :- https://pdlink.in/4jsHZXf
IBM :- https://pdlink.in/3QyJyqk
Cisco :- https://pdlink.in/4fYr1xO
Enroll For FREE & Get Certified 🎓
306
13:20
29.05.2025
close
Specials
Special discount offer

Channels
16
655K
lock_outline
CPM
lock_outline$$ 348.26
$$ 174.13
-50%
Reviews channel
keyboard_arrow_down
- Added: Newest first
- Added: Oldest first
- Rating: High to low
- Rating: Low to high
5.0
1 reviews over 6 months
Excellent (100%) In the last 6 months
c
**ffeenold@******.io
On the service since June 2022
15.12.202420:48
5
Everything is fine. Thank you!
Show more
New items
Channel statistics
Rating
22.9
Rating reviews
5.0
Сhannel Rating
18
Subscribers:
35.3K
APV
lock_outline
ER
0.9%
Posts per day:
4.0
CPM
lock_outlineSelected
0
channels for:$0.00
Subscribers:
0
Views:
lock_outline
Add to CartBuy for:$0.00
Комментарий