
Monetize Telegram Mini App with Telega.io
Connect your app, set CPM, and watch your revenue grow!
Start monetizing
20.4

Advertising on the Telegram channel «Artificial Intelligence»
5.0
9
Education
Language:
English
578
4
🔰 Machine Learning & Artificial Intelligence Free Resources
🔰 Advanced Data Science and Deep Learning Concepts
🔰 Build Chatbots & Large Language Models
🔰 Learn PyTorch & Tensorflow
Share
Add to favorite
Buy advertising in this channel
Placement Format:
keyboard_arrow_down
- 1/24
- 2/48
- 3/72
- Native
- 7 days
- Forwards
1 hour in the top / 24 hours in the feed
Quantity
%keyboard_arrow_down
- 1
- 2
- 3
- 4
- 5
- 8
- 10
- 15
Advertising publication cost
local_activity
$18.00$18.00local_mall
0.0%
Remaining at this price:0
Recent Channel Posts
Basics of Machine Learning 👇👇
Free Resources to learn Machine Learning: https://t.me/free4unow_backup/587
Machine learning is a branch of artificial intelligence where computers learn from data to make decisions without explicit programming. There are three main types:
1. Supervised Learning: The algorithm is trained on a labeled dataset, learning to map input to output. For example, it can predict housing prices based on features like size and location.
2. Unsupervised Learning: The algorithm explores data patterns without explicit labels. Clustering is a common task, grouping similar data points. An example is customer segmentation for targeted marketing.
3. Reinforcement Learning: The algorithm learns by interacting with an environment. It receives feedback in the form of rewards or penalties, improving its actions over time. Gaming AI and robotic control are applications.
Key concepts include:
- Features and Labels: Features are input variables, and labels are the desired output. The model learns to map features to labels during training.
- Training and Testing: The model is trained on a subset of data and then tested on unseen data to evaluate its performance.
- Overfitting and Underfitting: Overfitting occurs when a model is too complex and fits the training data too closely, performing poorly on new data. Underfitting happens when the model is too simple and fails to capture the underlying patterns.
- Algorithms: Different algorithms suit various tasks. Common ones include linear regression for predicting numerical values, and decision trees for classification tasks.
In summary, machine learning involves training models on data to make predictions or decisions. Supervised learning uses labeled data, unsupervised learning finds patterns in unlabeled data, and reinforcement learning learns through interaction with an environment. Key considerations include features, labels, overfitting, underfitting, and choosing the right algorithm for the task.
Join @datasciencefun for more
ENJOY LEARNING 👍👍
2142
13:29
21.08.2025
🔟 Free useful resources to learn Machine Learning
👉 Google
https://developers.google.com/machine-learning/crash-course
👉 Leetcode
https://leetcode.com/explore/featured/card/machine-learning-101
👉 Hackerrank
https://www.hackerrank.com/domains/ai/machine-learning
👉 Hands-on Machine Learning
https://t.me/datasciencefun/424
👉 FreeCodeCamp
https://www.freecodecamp.org/learn/machine-learning-with-python/
👉 Machine learning projects
https://t.me/datasciencefun/392
👉 Kaggle
https://www.kaggle.com/learn/intro-to-machine-learning
https://www.kaggle.com/learn/intermediate-machine-learning
👉 Geeksforgeeks
https://www.geeksforgeeks.org/machine-learning/
👉 Create ML Models
https://docs.microsoft.com/en-us/learn/paths/create-machine-learn-models/
👉 Machine Learning Test Cheat Sheet
https://www.cheatography.com/lulu-0012/cheat-sheets/test-ml/pdf/
Join @free4unow_backup for more free resources
ENJOY LEARNING 👍👍
2098
22:21
22.08.2025
imageImage preview is unavailable
Machine Learning Algorithms
1605
16:09
24.08.2025
imageImage preview is unavailable
📢 Join COGNEX now – where global investors are gathering!
💹 Daily returns starting from 45%, enjoy effortless wealth growth
🎁 22% team referral rewards, share profits with your friends
🤖 Powered by smart algorithms & fully automated quantitative strategies
💵 Instant payouts, real user testimonials, and daily profits credited with ease
🎯 Don’t wait any longer – this is the moment to change your future!
🌟 Join now!
1220
10:50
25.08.2025
A-Z of essential data science concepts
A: Algorithm - A set of rules or instructions for solving a problem or completing a task.
B: Big Data - Large and complex datasets that traditional data processing applications are unable to handle efficiently.
C: Classification - A type of machine learning task that involves assigning labels to instances based on their characteristics.
D: Data Mining - The process of discovering patterns and extracting useful information from large datasets.
E: Ensemble Learning - A machine learning technique that combines multiple models to improve predictive performance.
F: Feature Engineering - The process of selecting, extracting, and transforming features from raw data to improve model performance.
G: Gradient Descent - An optimization algorithm used to minimize the error of a model by adjusting its parameters iteratively.
H: Hypothesis Testing - A statistical method used to make inferences about a population based on sample data.
I: Imputation - The process of replacing missing values in a dataset with estimated values.
J: Joint Probability - The probability of the intersection of two or more events occurring simultaneously.
K: K-Means Clustering - A popular unsupervised machine learning algorithm used for clustering data points into groups.
L: Logistic Regression - A statistical model used for binary classification tasks.
M: Machine Learning - A subset of artificial intelligence that enables systems to learn from data and improve performance over time.
N: Neural Network - A computer system inspired by the structure of the human brain, used for various machine learning tasks.
O: Outlier Detection - The process of identifying observations in a dataset that significantly deviate from the rest of the data points.
P: Precision and Recall - Evaluation metrics used to assess the performance of classification models.
Q: Quantitative Analysis - The process of using mathematical and statistical methods to analyze and interpret data.
R: Regression Analysis - A statistical technique used to model the relationship between a dependent variable and one or more independent variables.
S: Support Vector Machine - A supervised machine learning algorithm used for classification and regression tasks.
T: Time Series Analysis - The study of data collected over time to detect patterns, trends, and seasonal variations.
U: Unsupervised Learning - Machine learning techniques used to identify patterns and relationships in data without labeled outcomes.
V: Validation - The process of assessing the performance and generalization of a machine learning model using independent datasets.
W: Weka - A popular open-source software tool used for data mining and machine learning tasks.
X: XGBoost - An optimized implementation of gradient boosting that is widely used for classification and regression tasks.
Y: Yarn - A resource manager used in Apache Hadoop for managing resources across distributed clusters.
Z: Zero-Inflated Model - A statistical model used to analyze data with excess zeros, commonly found in count data.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.me/datasciencefun
Like if you need similar content 😄👍
Hope this helps you 😊
1430
13:03
25.08.2025
🚀🔥 𝗕𝗲𝗰𝗼𝗺𝗲 𝗮𝗻 𝗔𝗴𝗲𝗻𝘁𝗶𝗰 𝗔𝗜 𝗕𝘂𝗶𝗹𝗱𝗲𝗿 — 𝗙𝗿𝗲𝗲 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗣𝗿𝗼𝗴𝗿𝗮𝗺
Master the most in-demand AI skill in today’s job market: building autonomous AI systems.
In Ready Tensor’s free, project-first program, you’ll create three portfolio-ready projects using 𝗟𝗮𝗻𝗴𝗖𝗵𝗮𝗶𝗻, 𝗟𝗮𝗻𝗴𝗚𝗿𝗮𝗽𝗵, and vector databases — and deploy production-ready agents that employers will notice.
Includes guided lectures, videos, and code.
𝗙𝗿𝗲𝗲. 𝗦𝗲𝗹𝗳-𝗽𝗮𝗰𝗲𝗱. 𝗖𝗮𝗿𝗲𝗲𝗿-𝗰𝗵𝗮𝗻𝗴𝗶𝗻𝗴.
👉 Apply now: https://go.readytensor.ai/cert-550-agentic-ai-certification
1646
13:29
25.08.2025
Will LLMs always hallucinate?
As large language models (LLMs) become more powerful and pervasive, it's crucial that we understand their limitations.
A new paper argues that hallucinations - where the model generates false or nonsensical information - are not just occasional mistakes, but an inherent property of these systems.
While the idea of hallucinations as features isn't new, the researchers' explanation is.
They draw on computational theory and Gödel's incompleteness theorems to show that hallucinations are baked into the very structure of LLMs.
In essence, they argue that the process of training and using these models involves undecidable problems - meaning there will always be some inputs that cause the model to go off the rails.
This would have big implications. It suggests that no amount of architectural tweaks, data cleaning, or fact-checking can fully eliminate hallucinations.
So what does this mean in practice? For one, it highlights the importance of using LLMs carefully, with an understanding of their limitations.
It also suggests that research into making models more robust and understanding their failure modes is crucial.
No matter how impressive the results, LLMs are not oracles - they're tools with inherent flaws and biases
LLM & Generative AI Resources: https://t.me/generativeai_gpt
1838
14:53
26.08.2025
If you want to get a job as a machine learning engineer, don’t start by diving into the hottest libraries like PyTorch,TensorFlow, Langchain, etc.
Yes, you might hear a lot about them or some other trending technology of the year...but guess what!
Technologies evolve rapidly, especially in the age of AI, but core concepts are always seen as more valuable than expertise in any particular tool. Stop trying to perform a brain surgery without knowing anything about human anatomy.
Instead, here are basic skills that will get you further than mastering any framework:
𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐚𝐧𝐝 𝐒𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐬 - My first exposure to probability and statistics was in college, and it felt abstract at the time, but these concepts are the backbone of ML.
You can start here: Khan Academy Statistics and Probability - https://www.khanacademy.org/math/statistics-probability
𝐋𝐢𝐧𝐞𝐚𝐫 𝐀𝐥𝐠𝐞𝐛𝐫𝐚 𝐚𝐧𝐝 𝐂𝐚𝐥𝐜𝐮𝐥𝐮𝐬 - Concepts like matrices, vectors, eigenvalues, and derivatives are fundamental to understanding how ml algorithms work. These are used in everything from simple regression to deep learning.
𝐏𝐫𝐨𝐠𝐫𝐚𝐦𝐦𝐢𝐧𝐠 - Should you learn Python, Rust, R, Julia, JavaScript, etc.? The best advice is to pick the language that is most frequently used for the type of work you want to do. I started with Python due to its simplicity and extensive library support, and it remains my go-to language for machine learning tasks.
You can start here: Automate the Boring Stuff with Python - https://automatetheboringstuff.com/
𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐔𝐧𝐝𝐞𝐫𝐬𝐭𝐚𝐧𝐝𝐢𝐧𝐠 - Understand the fundamental algorithms before jumping to deep learning. This includes linear regression, decision trees, SVMs, and clustering algorithms.
𝐃𝐞𝐩𝐥𝐨𝐲𝐦𝐞𝐧𝐭 𝐚𝐧𝐝 𝐏𝐫𝐨𝐝𝐮𝐜𝐭𝐢𝐨𝐧:
Knowing how to take a model from development to production is invaluable. This includes understanding APIs, model optimization, and monitoring. Tools like Docker and Flask are often used in this process.
𝐂𝐥𝐨𝐮𝐝 𝐂𝐨𝐦𝐩𝐮𝐭𝐢𝐧𝐠 𝐚𝐧𝐝 𝐁𝐢𝐠 𝐃𝐚𝐭𝐚:
Familiarity with cloud platforms (AWS, Google Cloud, Azure) and big data tools (Spark) is increasingly important as datasets grow larger. These skills help you manage and process large-scale data efficiently.
You can start here: Google Cloud Machine Learning - https://cloud.google.com/learn/training/machinelearning-ai
I love frameworks and libraries, and they can make anyone's job easier.
But the more solid your foundation, the easier it will be to pick up any new technologies and actually validate whether they solve your problems.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
All the best 👍👍
1577
20:39
27.08.2025
imageImage preview is unavailable
Types of AI
969
11:29
30.08.2025
Since many of you were asking me to send Data Science Session
📌So we have come with a session for you!! 👨🏻💻 👩🏻💻
This will help you to speed up your job hunting process 💪
Register here
👇👇
https://go.acciojob.com/RYFvdU
Only limited free slots are available so Register Now
652
17:00
30.08.2025
close
Reviews channel
keyboard_arrow_down
- Added: Newest first
- Added: Oldest first
- Rating: High to low
- Rating: Low to high
5.0
0 reviews over 6 months
c
**ffeenold@******.io
On the service since June 2022
15.12.202420:46
5
Everything is fine. Thank you!
Show more
New items
Channel statistics
Rating
20.4
Rating reviews
5.0
Сhannel Rating
19
Subscribers:
45.8K
APV
lock_outline
ER
2.8%
Posts per day:
4.0
CPM
lock_outlinekeyboard_double_arrow_left
shopping_cart
Channels:
0
Subscribers:
0
Views:
lock_outline
Total:
$0.00
Add to Cart
Clear the cart
Are you sure you want to clear the cart?
You will be able to add channels from the catalog to the cart again.
You will be able to add channels from the catalog to the cart again.
Clear my cart
Cancel
Комментарий