
Get clients in any niche!
Delegate the launch of advertising to us — for free
Learn more
31.2

Advertising on the Telegram channel «Data science and Machine Learning»
5.0
40
Computer science
Language:
English
2.5K
8
Quality audience, Educated and English speaking people in the channel who are interested in learning about Data science and Machine Learning.
▪️ Conversion rate is also high (depends on your adds)
▪️ Promotion catogory:-
▪️ Business Adds
▪️ Cryptocurrency Adds
▪️ Tech Adds
▪️ Article Adds
▪️ Educational Adds
▪️ Entartainment Adds
Share
Add to favorite
Buy advertising in this channel
Placement Format:
keyboard_arrow_down
- 1/24
- 2/48
- 3/72
- Native
- 7 days
- Forwards
1 hour in the top / 24 hours in the feed
Quantity
%keyboard_arrow_down
- 1
- 2
- 3
- 4
- 5
- 8
- 10
- 15
Advertising publication cost
local_activity
$38.40$38.40local_mall
0.0%
Remaining at this price:0
Recent Channel Posts
𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗿𝗼𝗮𝗱𝗺𝗮𝗽 𝘁𝗼 𝘀𝗵𝗮𝗽𝗲 𝘆𝗼𝘂𝗿 𝗰𝗮𝗿𝗲𝗲𝗿: 👇
-> 1. Learn the Language of Data
Start with Python or R. Learn how to write clean scripts, automate tasks, and manipulate data like a pro.
-> 2. Master Data Handling
Use Pandas, NumPy, and SQL. These are your weapons for data cleaning, transformation, and querying.
Garbage in = Garbage out. Always clean your data.
-> 3. Nail the Basics of Statistics & Probability
You can’t call yourself a data scientist if you don’t understand distributions, p-values, confidence intervals, and hypothesis testing.
-> 4. Exploratory Data Analysis (EDA)
Visualize the story behind the numbers with Matplotlib, Seaborn, and Plotly.
EDA is how you uncover hidden gold.
-> 5. Learn Machine Learning the Right Way
Start simple:
Linear Regression
Logistic Regression
Decision Trees
Then level up with Random Forest, XGBoost, and Neural Networks.
-> 6. Build Real Projects
Kaggle, personal projects, domain-specific problems—don’t just learn, apply.
Make a portfolio that speaks louder than your resume.
-> 7. Learn Deployment (Optional but Powerful)
Use Flask, Streamlit, or FastAPI to deploy your models.
Turn models into real-world applications.
-> 8. Sharpen Soft Skills
Storytelling, communication, and business acumen are just as important as technical skills.
Explain your insights like a leader.
𝗬𝗼𝘂 𝗱𝗼𝗻’𝘁 𝗵𝗮𝘃𝗲 𝘁𝗼 𝗯𝗲 𝗽𝗲𝗿𝗳𝗲𝗰𝘁.
𝗬𝗼𝘂 𝗷𝘂𝘀𝘁 𝗵𝗮𝘃𝗲 𝘁𝗼 𝗯𝗲 𝗰𝗼𝗻𝘀𝗶𝘀𝘁𝗲𝗻𝘁.
Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like if you need similar content 😄👍
Hope this helps you 😊
919
16:13
23.04.2025
imageImage preview is unavailable
𝗧𝗼𝗽 𝗠𝗡𝗖𝘀 𝗛𝗶𝗿𝗶𝗻𝗴 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝘁𝘀 😍
- Amazon
- Infosys
- PwC
- Genpact
- Deloitte
Qualification :- Any Graduate
𝐑𝐞𝐠𝐢𝐬𝐭𝐞𝐫 & 𝐔𝐩𝐥𝐨𝐚𝐝 𝐘𝐨𝐮𝐫 𝐑𝐞𝐬𝐮𝐦𝐞👇:-
https://pdlink.in/44qEIDu
Enter your experience & Complete The Registration Process
Select the company name & Apply for jobs💫
731
14:25
23.04.2025
🚨 BE CAREFUL! BITCOIN WILL BE GONE SOON!
Trader Lisa, who knew in advance about the fall of $LUNA now told about the fall of bitcoin.
She opened her channel to everyone for a couple days, after that it will close and become a paid channel. Be sure to subscribe 👇
https://t.me/+nj9XEyP8fmMyYjMx
https://t.me/+nj9XEyP8fmMyYjMx
https://t.me/+nj9XEyP8fmMyYjMx
837
12:13
23.04.2025
Ad 👇👇
748
12:13
23.04.2025
This is a quick and easy guide to the four main categories: Supervised, Unsupervised, Semi-Supervised, and Reinforcement Learning.
1. Supervised Learning
In supervised learning, the model learns from examples that already have the answers (labeled data). The goal is for the model to predict the correct result when given new data.
Some common supervised learning algorithms include:
➡️ Linear Regression – For predicting continuous values, like house prices.
➡️ Logistic Regression – For predicting categories, like spam or not spam.
➡️ Decision Trees – For making decisions in a step-by-step way.
➡️ K-Nearest Neighbors (KNN) – For finding similar data points.
➡️ Random Forests – A collection of decision trees for better accuracy.
➡️ Neural Networks – The foundation of deep learning, mimicking the human brain.
2. Unsupervised Learning
With unsupervised learning, the model explores patterns in data that doesn’t have any labels. It finds hidden structures or groupings.
Some popular unsupervised learning algorithms include:
➡️ K-Means Clustering – For grouping data into clusters.
➡️ Hierarchical Clustering – For building a tree of clusters.
➡️ Principal Component Analysis (PCA) – For reducing data to its most important parts.
➡️ Autoencoders – For finding simpler representations of data.
3. Semi-Supervised Learning
This is a mix of supervised and unsupervised learning. It uses a small amount of labeled data with a large amount of unlabeled data to improve learning.
Common semi-supervised learning algorithms include:
➡️ Label Propagation – For spreading labels through connected data points.
➡️ Semi-Supervised SVM – For combining labeled and unlabeled data.
➡️ Graph-Based Methods – For using graph structures to improve learning.
4. Reinforcement Learning
In reinforcement learning, the model learns by trial and error. It interacts with its environment, receives feedback (rewards or penalties), and learns how to act to maximize rewards.
Popular reinforcement learning algorithms include:
➡️ Q-Learning – For learning the best actions over time.
➡️ Deep Q-Networks (DQN) – Combining Q-learning with deep learning.
➡️ Policy Gradient Methods – For learning policies directly.
➡️ Proximal Policy Optimization (PPO) – For stable and effective learning.
Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like if you need similar content 😄👍
Hope this helps you 😊
1358
06:29
23.04.2025
imageImage preview is unavailable
𝟱 𝗙𝗿𝗲𝗲 𝗥𝗲𝘀𝗼𝘂𝗿𝗰𝗲𝘀 𝗧𝗵𝗮𝘁’𝗹𝗹 𝗠𝗮𝗸𝗲 𝗦𝗤𝗟 𝗙𝗶𝗻𝗮𝗹𝗹𝘆 𝗖𝗹𝗶𝗰𝗸.😍
SQL seems tough, right? 😩
These 5 FREE SQL resources will take you from beginner to advanced without boring theory dumps or confusion.📊
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3GtntaC
Master it with ease. 💡
669
05:10
23.04.2025
Breaking into Data Science doesn’t need to be complicated.
If you’re just starting out,
Here’s how to simplify your approach:
Avoid:
🚫 Trying to learn every tool and library (Python, R, TensorFlow, Hadoop, etc.) all at once.
🚫 Spending months on theoretical concepts without hands-on practice.
🚫 Overloading your resume with keywords instead of impactful projects.
🚫 Believing you need a Ph.D. to break into the field.
Instead:
✅ Start with Python or R—focus on mastering one language first.
✅ Learn how to work with structured data (Excel or SQL) - this is your bread and butter.
✅ Dive into a simple machine learning model (like linear regression) to understand the basics.
✅ Solve real-world problems with open datasets and share them in a portfolio.
✅ Build a project that tells a story - why the problem matters, what you found, and what actions it suggests.
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Like if you need similar content 😄👍
Hope this helps you 😊
#ai #datascience
1082
02:33
23.04.2025
imageImage preview is unavailable
Important Pandas Methods for Machine Learning
1866
09:33
22.04.2025
Data Science Interview Questions with Answers
What’s the difference between random forest and gradient boosting?
Random Forests builds each tree independently while Gradient Boosting builds one tree at a time.
Random Forests combine results at the end of the process (by averaging or "majority rules") while Gradient Boosting combines results along the way.
What happens to our linear regression model if we have three columns in our data: x, y, z — and z is a sum of x and y?
We would not be able to perform the regression. Because z is linearly dependent on x and y so when performing the regression would be a singular (not invertible) matrix.
Which regularization techniques do you know?
There are mainly two types of regularization,
L1 Regularization (Lasso regularization) - Adds the sum of absolute values of the coefficients to the cost function.
L2 Regularization (Ridge regularization) - Adds the sum of squares of coefficients to the cost function
Here, Lambda determines the amount of regularization.
How does L2 regularization look like in a linear model?
L2 regularization adds a penalty term to our cost function which is equal to the sum of squares of models coefficients multiplied by a lambda hyperparameter.
This technique makes sure that the coefficients are close to zero and is widely used in cases when we have a lot of features that might correlate with each other.
What are the main parameters in the gradient boosting model?
There are many parameters, but below are a few key defaults.
learning_rate=0.1 (shrinkage).
n_estimators=100 (number of trees).
max_depth=3.
min_samples_split=2.
min_samples_leaf=1.
subsample=1.0.
Data Science Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
1934
05:33
22.04.2025
imageImage preview is unavailable
𝟲 𝗙𝗿𝗲𝗲 𝗧𝗲𝗰𝗵 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 - 𝟭𝟬𝟬% 𝗙𝗥𝗘𝗘 😍
Level up your tech career without spending a rupee
- Cybersecurity
- EthicalHacking
- Python
- Web Development
- C Programming
- Android Development
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/42V73k4
All The Best✅️
1494
04:09
22.04.2025
close
Reviews channel
keyboard_arrow_down
- Added: Newest first
- Added: Oldest first
- Rating: High to low
- Rating: Low to high
5.0
2 reviews over 6 months
Excellent (100%) In the last 6 months
c
**ffeenold@******.io
On the service since June 2022
14.01.202514:46
5
Everything is fine. Thank you!
Show more
New items
Channel statistics
Rating
31.2
Rating reviews
5.0
Сhannel Rating
97
Subscribers:
58.8K
APV
lock_outline
ER
2.1%
Posts per day:
6.0
CPM
lock_outlineSelected
0
channels for:$0.00
Subscribers:
0
Views:
lock_outline
Add to CartBuy for:$0.00
Комментарий