
Monetize Telegram Mini App with Telega.io
Connect your app, set CPM, and watch your revenue grow!
Start monetizing
31.3

Advertising on the Telegram channel «Data science and Machine Learning»
5.0
41
Computer science
Language:
English
2.5K
8
Quality audience, Educated and English speaking people in the channel who are interested in learning about Data science and Machine Learning.
▪️ Conversion rate is also high (depends on your adds)
▪️ Promotion catogory:-
▪️ Business Adds
▪️ Cryptocurrency Adds
▪️ Tech Adds
▪️ Article Adds
▪️ Educational Adds
▪️ Entartainment Adds
Share
Add to favorite
Buy advertising in this channel
Placement Format:
keyboard_arrow_down
- 1/24
- 2/48
- 3/72
- Native
- 7 days
- Forwards
1 hour in the top / 24 hours in the feed
Quantity
%keyboard_arrow_down
- 1
- 2
- 3
- 4
- 5
- 8
- 10
- 15
Advertising publication cost
local_activity
$38.40$38.40local_mall
0.0%
Remaining at this price:0
Recent Channel Posts
imageImage preview is unavailable
𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 & 𝗙𝘂𝗹𝗹 𝗦𝘁𝗮𝗰𝗸 𝗗𝗲𝘃𝗲𝗹𝗼𝗽𝗺𝗲𝗻𝘁 𝗔𝗿𝗲 𝗠𝗼𝘀𝘁 𝗗𝗲𝗺𝗮𝗻𝗱𝗶𝗻𝗴 𝗖𝗮𝗿𝗲𝗲𝗿𝘀 𝗜𝗻 𝟮𝟬𝟮𝟱 😍
Learn Full Stack Development | Data Analytics & Data Science
Curriculum designed and taught by Alumni from IITs & Leading Tech Companies.
60+ Hiring Drives Every Month
𝐇𝐢𝐠𝐡𝐥𝐢𝐠𝐡𝐭𝐬:-
🌟 500+ Hiring Partners
🤝Trusted by 7500+ Students
💼 Avg. Rs. 7.2 LPA
🚀 41 LPA Highest Package
𝗙𝘂𝗹𝗹 𝗦𝘁𝗮𝗰𝗸 :- https://pdlink.in/4hO7rWY
𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 :- https://bit.ly/4g3kyT6
Hurry, limited seats available!🏃♀️
192
12:40
06.06.2025
Here are some essential data science concepts from A to Z:
A - Algorithm: A set of rules or instructions used to solve a problem or perform a task in data science.
B - Big Data: Large and complex datasets that cannot be easily processed using traditional data processing applications.
C - Clustering: A technique used to group similar data points together based on certain characteristics.
D - Data Cleaning: The process of identifying and correcting errors or inconsistencies in a dataset.
E - Exploratory Data Analysis (EDA): The process of analyzing and visualizing data to understand its underlying patterns and relationships.
F - Feature Engineering: The process of creating new features or variables from existing data to improve model performance.
G - Gradient Descent: An optimization algorithm used to minimize the error of a model by adjusting its parameters.
H - Hypothesis Testing: A statistical technique used to test the validity of a hypothesis or claim based on sample data.
I - Imputation: The process of filling in missing values in a dataset using statistical methods.
J - Joint Probability: The probability of two or more events occurring together.
K - K-Means Clustering: A popular clustering algorithm that partitions data into K clusters based on similarity.
L - Linear Regression: A statistical method used to model the relationship between a dependent variable and one or more independent variables.
M - Machine Learning: A subset of artificial intelligence that uses algorithms to learn patterns and make predictions from data.
N - Normal Distribution: A symmetrical bell-shaped distribution that is commonly used in statistical analysis.
O - Outlier Detection: The process of identifying and removing data points that are significantly different from the rest of the dataset.
P - Precision and Recall: Evaluation metrics used to assess the performance of classification models.
Q - Quantitative Analysis: The process of analyzing numerical data to draw conclusions and make decisions.
R - Random Forest: An ensemble learning algorithm that builds multiple decision trees to improve prediction accuracy.
S - Support Vector Machine (SVM): A supervised learning algorithm used for classification and regression tasks.
T - Time Series Analysis: A statistical technique used to analyze and forecast time-dependent data.
U - Unsupervised Learning: A type of machine learning where the model learns patterns and relationships in data without labeled outputs.
V - Validation Set: A subset of data used to evaluate the performance of a model during training.
W - Web Scraping: The process of extracting data from websites for analysis and visualization.
X - XGBoost: An optimized gradient boosting algorithm that is widely used in machine learning competitions.
Y - Yield Curve Analysis: The study of the relationship between interest rates and the maturity of fixed-income securities.
Z - Z-Score: A standardized score that represents the number of standard deviations a data point is from the mean.
Credits: https://t.me/free4unow_backup
Like if you need similar content 😄👍
524
08:01
06.06.2025
imageImage preview is unavailable
𝗟𝗲𝗮𝗿𝗻 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗳𝗼𝗿 𝗙𝗿𝗲𝗲 𝗼𝗻 𝗬𝗼𝘂𝗧𝘂𝗯𝗲 – 𝗖𝗼𝗺𝗽𝗹𝗲𝘁𝗲 𝗣𝗹𝗮𝘆𝗹𝗶𝘀𝘁 𝗚𝘂𝗶𝗱𝗲😍
🎥 YouTube is the ultimate free classroom—and this is your Data Analytics syllabus in one post!👨💻
From Python and SQL to Power BI, Machine Learning, and Data Science, these carefully curated playlists will take you from complete beginner to job-ready✨️📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4jzVggc
Enjoy Learning ✅️
632
05:55
06.06.2025
SQL is one of the core languages used in data science, powering everything from quick data retrieval to complex deep dive analysis. Whether you're a seasoned data scientist or just starting out, mastering SQL can boost your ability to analyze data, create robust pipelines, and deliver actionable insights.
Let’s dive into a comprehensive guide on SQL for Data Science!
I have broken it down into three key sections to help you:
𝟭. 𝗦𝗤𝗟 𝗖𝗼𝗻𝗰𝗲𝗽𝘁𝘀:
Get a handle on the essentials -> SELECT statements, filtering, aggregations, joins, window functions, and more.
𝟮. 𝗦𝗤𝗟 𝗶𝗻 𝗗𝗮𝘆-𝘁𝗼-𝗗𝗮𝘆 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲:
See how SQL fits into the daily data science workflow. From quick data queries and deep-dive analysis to building pipelines and dashboards, SQL is really useful for data scientists, especially for product data scientists.
𝟯. 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗦𝗤𝗟 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄𝘀:
Learn what interviewers look for in terms of technical skills, design and engineering expertise, communication abilities, and the importance of speed and accuracy.
1088
16:02
05.06.2025
SQL CHEAT SHEET👩💻
Here is a quick cheat sheet of some of the most essential SQL commands:
SELECT - Retrieves data from a database
UPDATE - Updates existing data in a database
DELETE - Removes data from a database
INSERT - Adds data to a database
CREATE - Creates an object such as a database or table
ALTER - Modifies an existing object in a database
DROP -Deletes an entire table or database
ORDER BY - Sorts the selected data in an ascending or descending order
WHERE – Condition used to filter a specific set of records from the database
GROUP BY - Groups a set of data by a common parameter
HAVING - Allows the use of aggregate functions within the query
JOIN - Joins two or more tables together to retrieve data
INDEX - Creates an index on a table, to speed up search times.
996
14:59
05.06.2025
imageImage preview is unavailable
𝗧𝗼𝗽 𝗖𝗼𝗺𝗽𝗮𝗻𝗶𝗲𝘀 𝗛𝗶𝗿𝗶𝗻𝗴 𝟮𝘆𝗿+ 𝗘𝘅𝗽 𝗣𝗿𝗼𝗳𝗲𝘀𝘀𝗶𝗼𝗻𝗮𝗹𝘀 😍
Siemens :- https://pdlink.in/4kPP6tx
JP Morgan :- https://pdlink.in/3Frgm2C
Orange :- https://pdlink.in/43yatKg
PhonePe :- https://pdlink.in/4kOTfOj
Oracle :- https://pdlink.in/4kQLFCU
Walmart :- https://pdlink.in/4kreO7J
Amazon :- https://pdlink.in/4jzo88g
Apply before the link expires💫
962
13:00
05.06.2025
If you want to get a job as a machine learning engineer, don’t start by diving into the hottest libraries like PyTorch,TensorFlow, Langchain, etc.
Yes, you might hear a lot about them or some other trending technology of the year...but guess what!
Technologies evolve rapidly, especially in the age of AI, but core concepts are always seen as more valuable than expertise in any particular tool. Stop trying to perform a brain surgery without knowing anything about human anatomy.
Instead, here are basic skills that will get you further than mastering any framework:
𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐚𝐧𝐝 𝐒𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐬 - My first exposure to probability and statistics was in college, and it felt abstract at the time, but these concepts are the backbone of ML.
You can start here: Khan Academy Statistics and Probability - https://www.khanacademy.org/math/statistics-probability
𝐋𝐢𝐧𝐞𝐚𝐫 𝐀𝐥𝐠𝐞𝐛𝐫𝐚 𝐚𝐧𝐝 𝐂𝐚𝐥𝐜𝐮𝐥𝐮𝐬 - Concepts like matrices, vectors, eigenvalues, and derivatives are fundamental to understanding how ml algorithms work. These are used in everything from simple regression to deep learning.
𝐏𝐫𝐨𝐠𝐫𝐚𝐦𝐦𝐢𝐧𝐠 - Should you learn Python, Rust, R, Julia, JavaScript, etc.? The best advice is to pick the language that is most frequently used for the type of work you want to do. I started with Python due to its simplicity and extensive library support, and it remains my go-to language for machine learning tasks.
You can start here: Automate the Boring Stuff with Python - https://automatetheboringstuff.com/
𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐔𝐧𝐝𝐞𝐫𝐬𝐭𝐚𝐧𝐝𝐢𝐧𝐠 - Understand the fundamental algorithms before jumping to deep learning. This includes linear regression, decision trees, SVMs, and clustering algorithms.
𝐃𝐞𝐩𝐥𝐨𝐲𝐦𝐞𝐧𝐭 𝐚𝐧𝐝 𝐏𝐫𝐨𝐝𝐮𝐜𝐭𝐢𝐨𝐧:
Knowing how to take a model from development to production is invaluable. This includes understanding APIs, model optimization, and monitoring. Tools like Docker and Flask are often used in this process.
𝐂𝐥𝐨𝐮𝐝 𝐂𝐨𝐦𝐩𝐮𝐭𝐢𝐧𝐠 𝐚𝐧𝐝 𝐁𝐢𝐠 𝐃𝐚𝐭𝐚:
Familiarity with cloud platforms (AWS, Google Cloud, Azure) and big data tools (Spark) is increasingly important as datasets grow larger. These skills help you manage and process large-scale data efficiently.
You can start here: Google Cloud Machine Learning - https://cloud.google.com/learn/training/machinelearning-ai
I love frameworks and libraries, and they can make anyone's job easier.
But the more solid your foundation, the easier it will be to pick up any new technologies and actually validate whether they solve your problems.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
All the best 👍👍
904
08:08
05.06.2025
imageImage preview is unavailable
𝗣𝗿𝗲𝗽𝗮𝗿𝗶𝗻𝗴 𝗳𝗼𝗿 𝗮𝗻 𝗔𝗺𝗮𝘇𝗼𝗻 𝗗𝗮𝘁𝗮 𝗥𝗼𝗹𝗲? 𝗦𝘁𝗮𝗿𝘁 𝘄𝗶𝘁𝗵 𝗧𝗵𝗲𝘀𝗲 𝗧𝗼𝗽 𝗦𝗤𝗟 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄 𝗤𝘂𝗲𝘀𝘁𝗶𝗼𝗻𝘀😍
💼 Why SQL Is Crucial for Amazon Interviews🗣
If you’re applying for a data analyst, data engineer, or business analyst role at Amazon, expect SQL to be a major part of the interview process👨💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4jrLrRy
Practicing real Amazon SQL interview questions is the key to success✅️
667
05:42
05.06.2025
Machine Learning isn't easy!
It’s the field that powers intelligent systems and predictive models.
To truly master Machine Learning, focus on these key areas:
0. Understanding the Basics of Algorithms: Learn about linear regression, decision trees, and k-nearest neighbors to build a solid foundation.
1. Mastering Data Preprocessing: Clean, normalize, and handle missing data to prepare your datasets for training.
2. Learning Supervised Learning Techniques: Dive deep into classification and regression models, such as SVMs, random forests, and logistic regression.
3. Exploring Unsupervised Learning: Understand clustering techniques (K-means, hierarchical) and dimensionality reduction (PCA, t-SNE).
4. Mastering Model Evaluation: Use techniques like cross-validation, confusion matrices, ROC curves, and F1 scores to assess model performance.
5. Understanding Overfitting and Underfitting: Learn how to balance bias and variance to build robust models.
6. Optimizing Hyperparameters: Use grid search, random search, and Bayesian optimization to fine-tune your models for better performance.
7. Diving into Neural Networks and Deep Learning: Explore deep learning with frameworks like TensorFlow and PyTorch to create advanced models like CNNs and RNNs.
8. Working with Natural Language Processing (NLP): Master text data, sentiment analysis, and techniques like word embeddings and transformers.
9. Staying Updated with New Techniques: Machine learning evolves rapidly—keep up with emerging models, techniques, and research.
Machine learning is about learning from data and improving models over time.
💡 Embrace the challenges of building algorithms, experimenting with data, and solving complex problems.
⏳ With time, practice, and persistence, you’ll develop the expertise to create systems that learn, predict, and adapt.
Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://t.me/datasciencefun
Like if you need similar content 😄👍
Hope this helps you 😊
#datascience
1150
11:58
04.06.2025
play_circleVideo preview is unavailable
MEE6 in Telegram 🔥
🤖 T22 - The best-in-class telegram group bot!
Stop juggling bots —T22 is MissRose x GroupHelp x Safeguard with a mini-app dashboard!
🔐 Verification & Captcha
🛡 Advanced Moderation Tools
📈 Leveling System
💬 Smart Welcome Flows
🐦 Twitter Raids
🧠 Mini-App Dashboard
📦 Miss Rose Config Importer
Discover T22 🆓
By MEE6 Creator
1090
07:38
04.06.2025
close
Reviews channel
keyboard_arrow_down
- Added: Newest first
- Added: Oldest first
- Rating: High to low
- Rating: Low to high
5.0
2 reviews over 6 months
Excellent (100%) In the last 6 months
c
**ffeenold@******.io
On the service since June 2022
29.05.202515:45
5
Everything is fine. Thank you!
Show more
New items
Channel statistics
Rating
31.3
Rating reviews
5.0
Сhannel Rating
99
Subscribers:
62.8K
APV
lock_outline
ER
1.9%
Posts per day:
6.0
CPM
lock_outlineSelected
0
channels for:$0.00
Subscribers:
0
Views:
lock_outline
Add to CartBuy for:$0.00
Комментарий