
Get clients in any niche!
Delegate the launch of advertising to us — for free
Learn more
26.6

Advertising on the Telegram channel «Data Science»
5.0
19
Business & startups
Language:
English
1.5K
5
Share
Add to favorite
Buy advertising in this channel
Placement Format:
keyboard_arrow_down
- 1/24
- 2/48
- 3/72
- Native
- 7 days
- Forwards
1 hour in the top / 24 hours in the feed
Quantity
%keyboard_arrow_down
- 1
- 2
- 3
- 4
- 5
- 8
- 10
- 15
Advertising publication cost
local_activity
$36.00$36.00local_mall
0.0%
Remaining at this price:0
Recent Channel Posts
imageImage preview is unavailable
This is how ML works
655
12:58
30.03.2025
Learn Data Science from The Best Data Scientist In Top Tech Companies!
Become a Successful Data Scientist In Top MNCs🔥
Eligibility:- BTech / BCA / BSc
🌟 2000+ Students Placed
🤝 500+ Hiring Partners
💼 Avg. Rs. 7.4 LPA
🚀 41 LPA Highest Package
𝐑𝐞𝐠𝐢𝐬𝐭𝐞𝐫 𝐍𝐨𝐰👇 :-
https://tracking.acciojob.com/g/PUfdDxgHR
Hurry, limited seats available!
850
08:50
30.03.2025
Data Scientist Roadmap
|
|-- 1. Basic Foundations
| |-- a. Mathematics
| | |-- i. Linear Algebra
| | |-- ii. Calculus
| | |-- iii. Probability
| |
-- iv. Statistics
| |
| |-- b. Programming
| | |-- i. Python
| | | |-- 1. Syntax and Basic Concepts
| | | |-- 2. Data Structures
| | | |-- 3. Control Structures
| | | |-- 4. Functions
| | |
-- 5. Object-Oriented Programming
| | |
| | -- ii. R (optional, based on preference)
| |
| |-- c. Data Manipulation
| | |-- i. Numpy (Python)
| | |-- ii. Pandas (Python)
| |
-- iii. Dplyr (R)
| |
| -- d. Data Visualization
| |-- i. Matplotlib (Python)
| |-- ii. Seaborn (Python)
|
-- iii. ggplot2 (R)
|
|-- 2. Data Exploration and Preprocessing
| |-- a. Exploratory Data Analysis (EDA)
| |-- b. Feature Engineering
| |-- c. Data Cleaning
| |-- d. Handling Missing Data
| -- e. Data Scaling and Normalization
|
|-- 3. Machine Learning
| |-- a. Supervised Learning
| | |-- i. Regression
| | | |-- 1. Linear Regression
| | |
-- 2. Polynomial Regression
| | |
| | -- ii. Classification
| | |-- 1. Logistic Regression
| | |-- 2. k-Nearest Neighbors
| | |-- 3. Support Vector Machines
| | |-- 4. Decision Trees
| |
-- 5. Random Forest
| |
| |-- b. Unsupervised Learning
| | |-- i. Clustering
| | | |-- 1. K-means
| | | |-- 2. DBSCAN
| | | -- 3. Hierarchical Clustering
| | |
| |
-- ii. Dimensionality Reduction
| | |-- 1. Principal Component Analysis (PCA)
| | |-- 2. t-Distributed Stochastic Neighbor Embedding (t-SNE)
| | -- 3. Linear Discriminant Analysis (LDA)
| |
| |-- c. Reinforcement Learning
| |-- d. Model Evaluation and Validation
| | |-- i. Cross-validation
| | |-- ii. Hyperparameter Tuning
| |
-- iii. Model Selection
| |
| -- e. ML Libraries and Frameworks
| |-- i. Scikit-learn (Python)
| |-- ii. TensorFlow (Python)
| |-- iii. Keras (Python)
|
-- iv. PyTorch (Python)
|
|-- 4. Deep Learning
| |-- a. Neural Networks
| | |-- i. Perceptron
| | -- ii. Multi-Layer Perceptron
| |
| |-- b. Convolutional Neural Networks (CNNs)
| | |-- i. Image Classification
| | |-- ii. Object Detection
| |
-- iii. Image Segmentation
| |
| |-- c. Recurrent Neural Networks (RNNs)
| | |-- i. Sequence-to-Sequence Models
| | |-- ii. Text Classification
| | -- iii. Sentiment Analysis
| |
| |-- d. Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU)
| | |-- i. Time Series Forecasting
| |
-- ii. Language Modeling
| |
| -- e. Generative Adversarial Networks (GANs)
| |-- i. Image Synthesis
| |-- ii. Style Transfer
|
-- iii. Data Augmentation
|
|-- 5. Big Data Technologies
| |-- a. Hadoop
| | |-- i. HDFS
| | -- ii. MapReduce
| |
| |-- b. Spark
| | |-- i. RDDs
| | |-- ii. DataFrames
| |
-- iii. MLlib
| |
| -- c. NoSQL Databases
| |-- i. MongoDB
| |-- ii. Cassandra
| |-- iii. HBase
|
-- iv. Couchbase
|
|-- 6. Data Visualization and Reporting
| |-- a. Dashboarding Tools
| | |-- i. Tableau
| | |-- ii. Power BI
| | |-- iii. Dash (Python)
| | -- iv. Shiny (R)
| |
| |-- b. Storytelling with Data
|
-- c. Effective Communication
|
|-- 7. Domain Knowledge and Soft Skills
| |-- a. Industry-specific Knowledge
| |-- b. Problem-solving
| |-- c. Communication Skills
| |-- d. Time Management
| -- e. Teamwork
|
-- 8. Staying Updated and Continuous Learning
|-- a. Online Courses
|-- b. Books and Research Papers
|-- c. Blogs and Podcasts
|-- d. Conferences and Workshops
`-- e. Networking and Community Engagement
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
All the best 👍👍746
08:09
30.03.2025
imageImage preview is unavailable
𝟱 𝗙𝗥𝗘𝗘 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 😍
Whether you’re a complete beginner or looking to level up, these courses cover Excel, Power BI, Data Science, and Real-World Analytics Projects to make you job-ready.
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3DPkrga
All The Best 🎊
761
06:11
30.03.2025
imageImage preview is unavailable
Data Science Resources 👆
1207
07:48
29.03.2025
How much Statistics must I know to become a Data Scientist?
This is one of the most common questions
Here are the must-know Statistics concepts every Data Scientist should know:
𝗣𝗿𝗼𝗯𝗮𝗯𝗶𝗹𝗶𝘁𝘆
↗ Bayes' Theorem & conditional probability
↗ Permutations & combinations
↗ Card & die roll problem-solving
𝗗𝗲𝘀𝗰𝗿𝗶𝗽𝘁𝗶𝘃𝗲 𝘀𝘁𝗮𝘁𝗶𝘀𝘁𝗶𝗰𝘀 & 𝗱𝗶𝘀𝘁𝗿𝗶𝗯𝘂𝘁𝗶𝗼𝗻𝘀
↗ Mean, median, mode
↗ Standard deviation and variance
↗ Bernoulli's, Binomial, Normal, Uniform, Exponential distributions
𝗜𝗻𝗳𝗲𝗿𝗲𝗻𝘁𝗶𝗮𝗹 𝘀𝘁𝗮𝘁𝗶𝘀𝘁𝗶𝗰𝘀
↗ A/B experimentation
↗ T-test, Z-test, Chi-squared tests
↗ Type 1 & 2 errors
↗ Sampling techniques & biases
↗ Confidence intervals & p-values
↗ Central Limit Theorem
↗ Causal inference techniques
𝗠𝗮𝗰𝗵𝗶𝗻𝗲 𝗹𝗲𝗮𝗿𝗻𝗶𝗻𝗴
↗ Logistic & Linear regression
↗ Decision trees & random forests
↗ Clustering models
↗ Feature engineering
↗ Feature selection methods
↗ Model testing & validation
↗ Time series analysis
Join our WhatsApp channel for more Statistics Resources
👇👇
https://whatsapp.com/channel/0029Vat3Dc4KAwEcfFbNnZ3O
Like if you need similar content 😄👍
1193
06:57
29.03.2025
imageImage preview is unavailable
𝗧𝗼𝗽 𝗰𝗼𝗺𝗽𝗮𝗻𝗶𝗲𝘀 𝗢𝗳𝗳𝗲𝗿𝗶𝗻𝗴 𝗙𝗥𝗘𝗘 𝘃𝗶𝗿𝘁𝘂𝗮𝗹 𝗲𝘅𝗽𝗲𝗿𝗶𝗲𝗻𝗰𝗲 𝗽𝗿𝗼𝗴𝗿𝗮𝗺𝘀😍
Want to work on real industry tasks, develop in-demand skills, and boost your resume—all for FREE?
Your dream career starts with real experience—grab this opportunity today!
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4bCyUIM
💡 No experience required—just learn, upskill & build your portfolio! 🚀
1086
04:52
29.03.2025
Q. Explain the data preprocessing steps in data analysis.
Ans. Data preprocessing transforms the data into a format that is more easily and effectively processed in data mining, machine learning and other data science tasks.
1. Data profiling.
2. Data cleansing.
3. Data reduction.
4. Data transformation.
5. Data enrichment.
6. Data validation.
Q. What Are the Three Stages of Building a Model in Machine Learning?
Ans. The three stages of building a machine learning model are:
Model Building: Choosing a suitable algorithm for the model and train it according to the requirement
Model Testing: Checking the accuracy of the model through the test data
Applying the Model: Making the required changes after testing and use the final model for real-time projects
Q. What are the subsets of SQL?
Ans. The following are the four significant subsets of the SQL:
Data definition language (DDL): It defines the data structure that consists of commands like CREATE, ALTER, DROP, etc.
Data manipulation language (DML): It is used to manipulate existing data in the database. The commands in this category are SELECT, UPDATE, INSERT, etc.
Data control language (DCL): It controls access to the data stored in the database. The commands in this category include GRANT and REVOKE.
Transaction Control Language (TCL): It is used to deal with the transaction operations in the database. The commands in this category are COMMIT, ROLLBACK, SET TRANSACTION, SAVEPOINT, etc.
Q. What is a Parameter in Tableau? Give an Example.
Ans. A parameter is a dynamic value that a customer could select, and you can use it to replace constant values in calculations, filters, and reference lines.
For example, when creating a filter to show the top 10 products based on total profit instead of the fixed value, you can update the filter to show the top 10, 20, or 30 products using a parameter.
1411
10:13
28.03.2025
imageImage preview is unavailable
𝟭𝟬𝟬% 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍
Master Python, Machine Learning, SQL, and Data Visualization with hands-on tutorials & real-world datasets? 🎯
This 100% FREE resource from Kaggle will help you build job-ready skills—no fluff, no fees, just pure learning!
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3XYAnDy
Perfect for Beginners ✅️
3639
04:00
28.03.2025
imageImage preview is unavailable
Steps to become a successful data scientist
1519
10:10
27.03.2025
close
Reviews channel
keyboard_arrow_down
- Added: Newest first
- Added: Oldest first
- Rating: High to low
- Rating: Low to high
5.0
2 reviews over 6 months
Excellent (100%) In the last 6 months
c
**ffeenold@******.io
On the service since June 2022
13.01.202500:26
5
Everything is fine. Thank you!
Show more
New items
Channel statistics
Rating
26.6
Rating reviews
5.0
Сhannel Rating
47
Followers:
51.8K
APV
lock_outline
ER
2.0%
Posts per day:
4.0
CPM
lock_outlineSelected
0
channels for:$0.00
Followers:
0
Views:
lock_outline
Add to CartBuy for:$0.00
Комментарий